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1) Velocity in this diagram is calculated from the hydraulic conductivity values of Freeze and Cherry
(1979, p. 29, reproduced in Exhibit 261), from the hydraulic gradient at Walkerton (0.002), and from
an effective porosity of 35% for unconsolidated materials, 10% for sandstone, and 0.1% for other
rocks.

2) Aquifers considered by the US EPA to be susceptible to bacterial contamination are shown with
bold bars.

3) Estimated velocities for Walkerton wells using the pumping test results are shown with asterisks.

Figure 1 Comparison of groundwater velocities in rocks and unconsolidated sediments
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Figure 2 Distribution of carbonate bedrock in southern Ontario
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Figure 3 Convergent flow paths draining to a spring, as mapped in
Blue Spring Cave, Indiana (after Palmer, 1969)
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Figure 4 Distribution of solution in carbonate bedrock overlain by owerbiarden.
Approximately 2% of solution takes place inthe bedrock.

60



3

>

3

8 -+100
()

>

(]

G

& 0
(]

B

£

= --100
[

S

g

o

L 200

Figure 5 Profile through the Vaucluse Spring in France, explored to a depth of more than
300 m below the water table. A tracer test from 30 km away arrived at the spring
in just six days, illustrating that groundwater 300 m below the water table is not
necessarily safe from bacterial contamination.
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Figure 6.32 Proportional geometric model of Castleguard II conduit system, Canada. From
C. Smart (1983b)

Figure 6 Major conduits associated with Castleguard Springs, near Columbia Icefield,
Alberta, as deduced from tracer testing, natural discharge pulse analysis,
and isotope and chemograph analysis (from Ford and Williams, 1989)
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Figure ¥ Groundwater flow velocities in conduits in carbonates from Warthington,
Danies, and Ford, 2000; see Exhilbit 261)
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Figure 8 Flow in the karstic drainage flowing to Big Spring, Kentucky. Top: cross-section
of the karst system. Bottom: Changes in water quality and discharge over a
period of 60 hours (after Ryan and Meiman, 1996; see Appendix 2)
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Figure 9 Drainage from the spring close toWell 5. Top: the creek on the south side of
the road leading toWWell 5. Bottorm: the gauging structure at the paint where
the south creek spring emerges fromthe culvert and joins the north spring

creek. This pointis 60 mfrom YWell 9.
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Figure 10 Fourviews af Spring B, midway between Wells 6 and 7, anJuly 3 2001

Top left 750 a.m. Well 7 started pumping at 5:15 a.m. The flow out of the spring is
2.4 s (32 gallons per minute)

Top right: 7:80 a.m. The spring emerges fram a pipe abot 10 mlong. The actual
location of the spring is at the area of bare sail in the backoround.

Bottom left: 4:85 p.m. Well 7 has noe been pumping continuoushy for 11 hoors and 40
mingtes. The water level has now declined to the point where
the spring has ceased flowing and 0,22 Ls (2.9 gallons per
minute) are flowing from the surface into the aquifer. The
phyweaod weir is acting as a dam, preventing even more inflow
inta the aguifer.

Bottom right: 455 pom. A wertical wiew of the water flowing over the weir and into the
aguifer.
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accur in a pomus mediom aguifer such as sand (data from Gaolder
Asgsociates, 2000a).
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Figure 12
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Figure 13 Stratigraphic carrelation of WWells 4, 6, and ¥ using gamma logs ran by Galder
Associates, showing the major locations of inflo to the wells. There are no
precise locations for inflows toWell 7, so the inflows for the adjacent test well
(T 1-36) are substituted. The locations and percermtanges of inflow to the
wells are also shon.
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Figure 14 Probabilities per borehole of intersecting a void, showing that larger voids
were intersected in five boreholes at Walkerton than in six boreholes in the

Mammoth Cave area. The Mammoth Cave boreholes averaged 55 m in
depth.
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Figure 18 Daily rainfall at Hanover (from Saugeen Yalley Conservation Authority

gauge) up to April 20 2001 and afterweards at a gauge heside Well 7.
The top figure also shows running weekly averages and the hottom

figure also shows running tawo-weekly averages.
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Figure 16 Bacteria data fromWell 5 {after OCWYA, 200183, Top: total caliform (salid) and
E. Coli itriangles) in Well & raw water from May 28 to June 14 2000, compared
to precipitation (bars) from May 23 to June 14 2000, Bottom: total caoliform
(solich and turbidity (hars) inwWell 5 raw water from May 28 to June 14 2000,
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Figure 17  Total coliforms in the raw water (after QCWE, 2001 a,b) atWell 6
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Figure 18  Twwo groundwater traces fram a sinking strearmto a spring in Smithwille,
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high-flow conditions whereas trace #6 was in low-flow conditions. The dye
recovery cumes are both normalised to a 1 g injection. Modified from
Woarthington, 5.8.H., and D.C.Ford (1997,
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averthe period data May 1 2000 to April 17 2001, showing that there are
aften substantial differences hetween the twa locations (data from Saugeen
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Figure 21 Variation in total coliform during the pumping test at Well 5 (top) and
at Well 6 (bottom). The individual results at Well 5 are shown by
triangles, and the solid line and circles represent averages of two
samples taken at the same time (data from Golder Associates, 2000b.
Tables 8 and 14).
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contamination of the well. From SCADA records, courtesy of Oy,
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Figure 23 Background bacteria in the raw water at Well 6 o and atwell 7
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Figure 26 Piper diagram showing the major ions in the groundwater at Well 5 and =t
the nearby montoring wells (data from Golder Associates, 20005 and 2000k).
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Figure 27 Piper diagram showing the major ions in the groundwater atWells 6 and 7
and at the nearky monitaring wells (data from Golder Associates, 20003, k).
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Figure 28 Flot of anions for water samples fram Walkerton, showing the rocks from
which the anions are commonty derived in the Walkerton area (data from
Golder Associates, 20003 and 2000%k0).

84



Stream
galge

Springs

topographic catchment addMDnalcanﬂwﬂenth
of 167 hectares for Well 5 0.3 hecares around springs

Figure 29 Location of the springs close to wWell 5 and the suface catchment area
af 2.0 hectares far the springs (n part after B.W. Ross and Associates,
Exhikit 221, Appendix L)
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Figure 30 Discharge and electrical conductivity of the YWell 5 springs, and precipitation
at el ¥
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Figure 31 Accumulated precipitation at a rain gauge beside Well ¥, showing
rmajor rain everts on May 22nd, 2ath, and 28th 2001
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Figure 32 Location of the springs close to Wells B, 7 and 9 and the boundary

of the 117 hectare (0.45 square mile) surface catchment surrounding
the wells
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Figure 36 Geological cross-section thraugh Well 5 (gealogy after Liberty and

Bolton, 19713, Mote that there is considerable verdical exaggeration
in the diadgram.
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Figure 37 Locations where discharge was measured
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Figure 38 Specific discharde (in litres per second per square kilometre) for the areas
araund Wells 5, 6, and ¥, showing anaomalously hiogh specific discharge far

the spring areas

94



Marth and South topographic

Catchments catchment
{11.93 hectares) (2.0 hectares)
Silver Creek
3. hranch
vy
N
1
1
1 [
LoOAg
%'m .
ST
v
L
§ 4
WA
W

Figure 39 Topographic catchment of 2.0 hectares (shaded) and the possible additional
11.83 hectare catchiment that could alsa possible cantribute averland flow to
the wWell 5 area following intense rain (after B.W. Ross, Exhibit 221, Appendiz L
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Figure 40 Plan of the approximate groundwater catchment far the springs at Well 5,
superimposed on the water level map based an MOE records (fraom Golder
Asgsociates, 2000a, Figure 12) itop) and prafile throudgh the catchment
area for the springs chottorm
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Figure 41 Bedrock surface close toWel 4 (from Golder report, September 2000, Exhikit 259,
Figure 113, At monitaring well 7 there are two possibilities:
&) bedrock surface at 28213, Inthis case there is1.68 mhigh cave belaw 31 cm
of bedrock
b bedrock surface at 28014 m. Inthiscase a 13 cm thick boulder was drilled through.

motes: manitaring well 5 is adjacent to Well 5
the verical exagoeration istimes 10
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Figure 42 Bedrock topography in the areas of Wells 5, 6, and 7 from provincial
1:450000 maps P165 (Davizs and MoClymont, 1962 top) and P3207
(kely and Carter, 1993 hottorm). Wells G, 6, and ¥ are indicated
on the map. Both maps have a 24 foot contour interal.
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Figure 43 Geolodical cross-section through Well T (geology after Liberty and

Bolon, 19713
in the diagram.

klote that there is considerable vertical exagoeration
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Figure 44 Approzimate catchiment zones forwells 5 and for 6. The surface
catchment zones for the spring areas are shown in dark grey and the
groundweater catchiments are shiowen i light grey. The possible extension
of the surface catchment zone for the Well 5 area which might flow to
YWell & after heawy rain is shown in medidm orey. The three circles each
have a radius of 4 km around Wells 3, 6, and T, respectively, which
represents the radius within which there was ervironmental testing of
livestock farms (Bruce-Grey-Owen Sound Health Unit, 2000, p. i,
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Figure 45 Time of travel (TOT) zones for groundwater flow to Dewitt Spring, Litah,
biazed on the assumption that the carbonate aguifer behaves as a porous medium,
and the trajectories of three subsequent tracer testswhich all took less than 31 days
totravel 6.9 t0 11.6 kimto the spring (from Spangler, 1999 see Appendix 3)
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