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INTRODUCTION

The contamination of the Niagara River by toxic
substances and the impact of the river on Lake
Ontario have been well documented (NRTC 1984;
Allan et al 1983; Thomas et al 1988). Tb manage
toxic substances in the river, Environment Canada,
the U.S. Environmental ProtectionAgency Region
11, the Ontario Ministry of the Environment and
the New York State Department of Environmen-
tal Conservation signed a "Declaration of Intent"
in February 1987. The objective of this Declara-
tion is to achieve significant reductions of toxic
contaminants in the Niagara River with a sub-ob-
jective of reducing the inputs of specific toxic
"chemicals of concern" from point and non-point
sources by 50% by 1996. Eighteen priority toxics
have been identified for the Niagara River, ten of
which, because they are deemed to have signifi-
cant sources along the river, have been designated
for 50% reduction ('Table 1). The Niagara River
Toxics Management Plan (NRTMP) is the program
designed to achieve these objectives. An integral
component of this plan is the upstream/down-
stream monitoring program established by Envi-
ronment Canada (EC). Data from this program,
along with those from point and noia-point source
programs were to be used in a mass balance frame-
work to determine if the 50% reduction goal had
been achieved by 1996. Williams et al (1992) were
the first to raise concerns that this approach would
not be successful due to the incompatibility of data

among these programs. These concerns were sub-
sequently confirmed in a report released as part of
the NRTMP (NRTMP 1993). As a result, the
Niagara River Coordinating Committee has rec-
ommended examining alternative ways to dem-
onstrate progress.

The Ontario Ministry of Environment and
Energy (MOEE) conducts a biomonitoring pro-
gram on the Niagara River. Parts of this program
have been operative since the mid-70s. Despite
the fact that the program continues to produce
valuable information relevant to the goals of the
NRTMP, it is not currently a component of the
NRTMP.

This paper presents our thoughts on how
EC's upstream/downstream program and the
MOEE's biomonitoring program can be used ef-
fectively as an approach to measure and commu-
nicate progress in meeting the goal of the Niagara
River Declaration of Intent. It also provides some
thoughts on a new, or perhaps revised, approach
that could be considered in the NRTMP. In our
opinion, this new approach would be more useful
for determining the success of remedial actions in
cleaning up the Niagara River.

THE UTILITY OF THE UPSTREAM/
DOWNSTREAM PROGRAM

Introduction

The upstream/downstream program measures the
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inputs of both dissolved and suspended sediment-
associated toxic chemicals to the Niagara River
from Lake Erie and the loadings of these chemi-
cals, from the river, to Lake Ontario. Weekly water
and suspended sediment samples are collected at
two permanent sampling stations located at the
head (Fort Erie = FE) and mouth (Niagara-on-the-
Lake = NOTL) of the Niagara River. The stations
were chosen to be representative of water enter-
ing the river from the eastern basin of Lake Erie
(Ad hoc Group on Physical Limnology and Hy-
draulics 1989) and the outflow from the Niagara
River to Lake Ontario (Green 1988). Both sta-

calculated for FE from that calculated for NOTL.
The difference is taken as representative of addi-
tional loads entering from sources along the river.
The calculation of loads and the determination of
trends in loads presents several difficulties. For
example, the concentrations for many of the
chemicals are at, or below, method detection lim-
its. This requires the application of specialized
statistical analyses, such as the maximum likeli-
hood estimate (MLE) method (El-Shaarawi 1989)
to determine means, confidence intervals for
means, and whether there is a significant differ-
ence between FE and NOTL loads.

tions are sampled continuously over a 24-hour Our approach here is much simpler. We have
period. Sampling times are offset by fifteen to chosen to plot the concentration data over time,
eighteen hours to account for the travel time of
water in the river.

The suspended sediment phase is analyzed
for organochlorine pesticides (OCs), PCBs,
chlorobenzenes (CBs), polynuclear aromatic hy-
drocarbons (PAHs), phthalates, phenols, 2,3,7,8-
TCDD, trace metals, particulate organic carbon
(POC) and particulate organic nitrogen (PON).
The dissolved phase is analyzed for the same pa-
rameters excluding trace metals: Trace metals and
phenols are also measured on whole water sam-
ples.

Details of sampling equipment and proce-
dures. are available elsewhere (NRSP 1988;
NRDIG 1994). Analytical procedures are docu-
mented in Environment Canada (1979) and the
Niagara River Analytical Protocol (NRAP 1987).

The suspended sediments are collected from
a volume of about 8640 L of water. The data are
considered to be a good estimate of the load in the
Niagara River perhaps underestimated by an
amount equivalent to the particulate recovery ef-
ficiency of the Westfalia centrifuge which is about

90-95% (Allan 1986).

Results and Discussion

Within the NRTMP framework, analysis of the
upstream/downstream data is aimed at determin-

ing trends in bads at FE and NOTL and in the
"differential load' between these two stations. The

differential load is obtained by subtracting the load

and to use all the data as reported by the labora-
tory, including data which were quantitated, but
below the method detection limit (MDL). We have
performed no statistical analyses on the data, and,
therefore, imply no statistical inference in terms
of trends. This is the reason why we have con-
sciously chosen to use the word ̀ change' rather
than ̀ trend'.

There is a quote from a well-known statis-
tical text written about ten years ago by Cham-
bers, Cleveland, Meiner and Tukey, four reputed
statisticians, which goes as follows: "There is no
single statistical tool as powerful as a well chosen
graph" (Chambers et al 1983). Or put more popu-
larly "A picture is worth a thousand words". In
short; our approach has been to let the data speak
for themselves. The data we have used are those
collected from April 1986 to the end of December
1993.

1. Measurement of Changes Over Time

The upstream/downstream program can measure
changes in chemical concentrations over time in
water and suspended sediments at NOTL and FE.

(1) Changes due to reductions In Niagara
River Sources

Some of the changes in chemical concentrations
observed at NOTL are due to reduction in loads
from sources along the Niagara River. Figures 1
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and 2 illustrate this using the concentrations of
hexachlorobutadiene (HCBD) and
octachlorostyrene (OCS) on suspended sediments.
OCS is one of the eighteen priority toxics. Nei-
ther of these chemicals are detected at FE, so we
can be fairly certain that any changes in concen-
trations are due to changes in loads of these chemi-
cals from Niagara River sources. Figure 1 shows
the suspended sediment data for HCBD at NOTL.
The seasonality in the data is evident, with higher
concentrations in summer and lower concentra-
tions in winter probably due to sediment dilution.
Storm-related sediment resuspension, shoreline
erosion and ice scouring are all known to occur in
Lake Erie during the winter (Kuntz and Warry
1983; Mudroch and Williams 1989). These con-
tribute to increased suspended sediment concen-
trations in the river. Superimposed on this pattern
are high concentration "spikes". These are due to
inputs of HCBD from sources along the river and
the magnitude of the spikes suggests that the in-
puts are large. Cursory analysis of the suspended
sediment data indicates that these spikes are not
correlated with changes in the particulate organic
carbon content of the suspended sediments (i.e.,
possible changes in plankton biomass and the ef-
fects of bioconcentration/bioaccumulation) and do
not correlate with rain events. Figure 1 also shows
that the magnitude of these spikes has decreased
over time and that, clearly, there is a difference
post-1990. The explanation would seem to be
better control of sources as evidenced by the re-
duction in the number of spikes, and a reduction
in loads as evidenced by the change in the magni-
tude of the concentrations.

Figure 2 shows the suspended sediment data
for OCS at NOTL. Measurement of OCS began
in 1989. The results also show a decreasing pat-
tern similar to that for HCBD. The explanation
for the observed decrease, therefore, is probably
the same (i.e., better control of sources and re-
duced inputs). It can be noted that by 1993, OCS
was detected in only a few samples.

Hexachlorobenzene (HCB), one of the ten
chemicals designated for 50% reduction, is also a
chemical which is detected at both FE and NOTL.
We note that many of the concentrations reported

by the laboratory for FE, although quantified, are
below the method detection limit (MDL) of 3.5
ng/g. Figure 3(a) shows the suspended sediment
data for HCB at NOTL and Figure 3(b) shows the
corresponding data for FE. The first point to note
in these Figures is the difference in the magnitude
of the concentrations between FE and NOTL.
Concentrations of HCB at NOTL are from five to
fifty fold (considering the peaks) higher than those
observed at FE. This indicates that there are large
inputs of HCB from sources along the river.

The concentrations of HCB at FE (Figure
3b) have changed very little over time, with the
majority of the data being below 2 ng/g. There is
some seasonality in the data, but it is sporadic and
not as well defined as at NOTL. There are occa-
sional spikes in the data. These may be due to
bioconcentration/bioaccumulation of HCB by
plankton, or, perhaps, to different types of sedi-
ment from Lake Erie entering the river (eg.,
nearshore sediments versus basin muds). Concen-
trations of organic chemicals in basin muds are
usually higher than those in nearshore sediments.
In general, the range of concentrations observed
at FE agree reasonably well with those reported
by Oliver and Bourbonniere (1985) for eastern
basin Lake Erie bottom sediments [mean 2.7 ng/
g; range 1.4 - 5.2 ng/g]. Indeed, it seems reason-
able to suggest that the concentrations of HCB
observed on FE suspended sediments are prob-
ably the result of resuspended bottom sediments
making up the bulk of the suspended sediments
being sampled at the FE station.

The pattern of HCB concentrations at FE
can be contrasted to that observed at NOTL (Fig-
ure 3a). Clearly, the patterns at the two stations
are very different. The change in HCB concen-
trations at NOTL, which is evident past-1990, is
indicative of better control of sources and reduc-
tion of HCB inputs. The two high peaks in 1993
are inconsistent with the general decrease which
is evident since Early 1990. These may be due to
an isolated episodic event at a point or non-point
source (see Section 2). We shall have to wait for
1994 data to see if this is, indeed, the case.
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(ii) Changes due to reduction in Lake Erie

Inputs

The changes observed in the concentrations of
some chemicals at NOTL are the direct result of
changes that occur in Lake Erie inputs of these
chemicals to the river. To illustrate this, we have
chosen to look at the water (i.e., dissolved) con-
centrations of dieldrin. Dieldrin is also one of the
eighteen priority toxics in the Niagara River. Fig-
ure 4(a) shows the water concentrations of dieldrin
at NOTL while Figure 4(b) shows the correspond-
ing data for FE. Comparison of these Figures
indicates that the concentrations at both stations
are very similar. Concentrations of dieldrin at FE
appear to be decreasing. This decrease is also seen
at NOTL. The inference is that dieldrin inputs to
the Niagara River from Lake Erie are directly re-
sponsiblefor what is observed at NOTL It is prob=
able, therefore, that the effect of any additional
inputs of dieldrin from Niagara River sources
would be lost as noise in terms of the Lake Erie
input. This raises the question of why dieldrin is
listed as one of the eighteen priority toxics. Al-
though further analysis of the data is required, we
feel that a similar question could be raised with
respect to DDT and its metabolites and, perhaps,
chlordane. The differential load for the DDT
metabolite, p,p'-DDE, has consistently been re-
ported•.as negative (i.e., loads at FE higher than
those at NOTL). Preliminary data from a recent
study, which compares FE samples with those
collected at the Buffalo Water Intake, suggest that
the FE station is being influenced by an upstream
source of DDT (Environment Canada, unpublished
data). This has been previously suggested by
Litten (1994). This means that the FE results
might, therefore, be biased high compared to what
would be considered as more representative con-
centrations of DDT and its metabolites entering
the river from the eastern basin oPLake Erie.

2. Measurement of Continuing Episodic
Chemical Inputs

The upstream/downstream program can measure
sporadic changes in chemical concentrations in the

Niagara River which, we suspect, are related to
episodic chemical loading events such as plant
process upsets, spills and major leaks from haz-
ardous waste sites. To illustrate this, we have cho-
sen to look at mirex. Mirex only occurs at NOTL
so, again, we can be fairly certain that any changes
in concentration are due to changes in inputs from
sources along the river. Mirex is also one of the
chemicals designated for 50% reduction by 1996.
It should be noted that the production of mirex by
Hooker Chemical, now Occidental Chemical
(OCC), ceased in 1976.

Figure 5 shows the suspended sediment data
for mirex at NOTL The pattern of the data is
much different from that observed for the chemi-
cals discussed above. In contrast to the time-dis-
tributions for the chemicals HCBD, OCS and
HCB, which are fairly continuous, the pattern for
mirex is intermittent. Mirex inputs seem to have
decreased between 1986 and 1989 as evidenced
by the decreasing magnitude of the spike concen-
trations, and the decreased frequency of detection
of mirex throughout the year. With the exception
of 1991, however, the frequency of detection of
mirex since 1989 has remained fairly constant.
Clearly, something unusual happened in 1991 to
cause the major peaks in that year. This can be
corroborated by the data for
hexachlorocyclopentadiene presented in Figure 6.
Hexachlorocyclopentadiene has been detected
only a few times since 1986. When it has been
detected, it has been at very low concentrations.
However, as Figure 6 shows, on July 18, 1991,
hexachlorocyclopentadiene was detected in the
Niagara River at a concentration exceeding 100
ng/g. This is the same date that the highest peak
for mirex occurred in 1991.

Mirex is, what is known as, a
hexachlorocyclopentadiene dieter (i.e., it was pro-
duced by combining two
hexachlorocyclopentadiene molecules). There-
fore, the occurrence of mirex and
hexachlorocyclopentadiene together is not unex-
pected. The fact that the production of mirex
ceased in 1976 suggests that we are probably look-
ing at input from a waste site. Since OCC was the
only company on the Niagara River which pro-
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fore,the occurrence of mirex and 
hexachlorocyc1opentadiene together is not unex­
pected. The fact that the production of mirex 
ceased in 1976 suggests that we are probably look­
ingat input from a waste site. Since OCC was the 
only company on the Niagara River which pro-



duced mirex, the waste site is likely associated with
OCC. - Mirex and hexachlorocyclopentadiene or
hexachlorocyclopentadiene derivatives have been
identified at two OCC sites (NRTC 1984) -- S-
Area and Hyde Park. Finally, something would
have to be happening at one of these sites to cause
the episodic event which caused the simultaneous
occurrence of the major peaks for these two chemi-
cals. From EPA reports, we know that consider-
able remedial work was going on at the Hyde Park
site at this time. Thus, a reasonable conclusion
would be that the Hyde Park waste site is the source
for this event. Unfortunately, the caged mussels
deployed at Bloody Run Creek on two occasions
in 1991, which would have provided additional
information, disappeared on both occasions.
Therefore, this conclusion is only speculative, at
this time, pending further follow-up.

3. Limitations in Demonstrating Reductions
for the Current 18 Priority Toxics

Having looked at some of the things that the up-
stream/downstream program can do in terms of
reporting on the progress toward achieving the
goals of the Niagara River Declaration of Intent,
we thought we should also state what it will not
be able to do. For this, we have focused, specifi-
cally, on the list of eighteen priority toxics (Table
1). The limitations with respect to these are listed
belowc

- Even with detection limits at the pg/g (=10'
'2g/g) level, dioxin has never been detected
in either water or suspended sediment in this
program; therefore, it will be impossible to
report anything with respect to load reduc-
tions.
- Tetrachloroethylene (TCE) and PCB either
are not detected, or are higher, at FE (i.e.,
they exhibit losses between FE and NOTL);
therefore, no statement on load reductions
will be possible. Most of the volatile chemi-
cals, such as TCE, disappear from the river
between FE and NOTL probably due to
volatilization. Analysis for volatiles, there-
fore, was discontinued in 1993.

- Suspended sediment concentrations of
DDT and metabolites and dieldrin are usu-
ally higher at FE than NOTL (i.e., they ex-
hibit losses between FE and NOTL); there-
fore, no statement on load reductions will
be possible.
- Benzo(b)- and benzo(k)fluoranthene can-
not be distinguished from each other ana-
lytically; therefore, it will not be possible to
report on them separately in terms of meet-
ing the 50% reduction goal.
- Chrysene cannot be distinguished analyti-
cally from triphenylene; we are not certain
at this time, whether this actually represents
a problem in Niagara River samples (i.e.,
can triphenylene be expected to occur in the
Niagara River); until this is resolved, how-
ever, it raises a question as to what the
chrysene data really represent.
- Mercury is detected only sporadically since
its concentration in the river is close to, or
below, the detection limit; the loads, there-
fore, might only be due to analytical noise.
Analysis of octachlorostyrene only began

in 1989; therefore, there are no 1986 base-
line data (which is the benchmark date for
determining the 50% reductions); despite
this, the data appear to show reductions in
loads.
Toxaphene has not been measured in this

program due to lack of an appropriate ana-
lytical methodology.

This means that of the ten chemicals designated
for 50% reduction by 1996, results from the up-
stream/downstream program cannot be used to
report on reductions for five (benzo(b)-,
benzo(k)fluoranthene, dioxin, mercury and
tetrachloroethylene). With respect to the eight
additional chemicals, there are no data for
toxaphene, the data for chrysene may be question-
able in terms of what it actually represents, and
there may be problems with interpretation of the
data for DDT and metabolites, dieldrin and
chlordane. The upstream/downstream program,
therefore, will be useful to report on, perhaps, only
eight of the eighteen priority toxics.
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THE UTILITY OF THE BIOMONITORING
PROGRAM

Introduction

Contaminants are often present in water at con-
centrations below available, routine analytical
method detection limits. However, these same
contaminants, once taken up by aquatic organisms,
may attain tissue levels which are readily measur-
able by routine analytical means. As a result, bio-
logical organisms can be useful surrogates for
water analyses. Biomonitoring studies can indi-
cate the presence of contaminants, their sources
and the availability of the contaminant to the or-
ganism. Therefore, in the Niagara River, the
biomonitoring program and the upstream/down-
stream program are both important, and comple-
mentary to each other. For example, as noted
above, dioxin has never been detected in the river
by the upstream/downstream program. The
biomonitoring program, however, has confirmed
its presence and has identified sources. Further-
more, the upstream/downstream program is rather
like a black-box; it tells you what comes in from
Lake Erie, what goes out into Lake Ontario, and
whether there is a difference in these. It cannot,
however, tell you what source along the river .is
responsible for this difference. The biomonitoring
program can help do this, as illustrated by the re-
sults presented below.

MOEE has used several types of biomonitors
in the Niagara River including (1) introduced
caged mussels and leeches, (2) indigenous spottail
shiners, (3) sportfish, and (4) Clcadophora (a type
of filamentous green algae). We have chosen to
present examples of mussel and spottail shiner
data.

Mussels (Elliptio complanata) can rapidly
accumulate (within 2 to 4 days) detectable levels

of organochlorine contaminants such as PCBs

(Kauss et al 1981). In the Niagara River, mussels
are introduced in cages, which permits individu-

als with a similar physical, chemical and biologi-

cal background to be exposed for a pre-selected

` period in a selected area. The exposure period in

the river is three weeks. Sampling stations are

located on both the Canadian and American sides
at several tributary mouths and adjacent to known
municipal and industrial outfalls and hazardous
waste sites. The program is designed to measure
contamination from shore-based sources rather
than ambient conditions. Details of sampling and
analytical methods are available elsewhere
(Richman 1992).

Young-of-the-year spottail shiners (Notropis
hudsonius), due to their low mobility, are good
indicators of contaminant sources and they offer
a high degree of sample comparability because of
similar fish age and lipid content. Fish collection
sites are located on both sides of the Niagara River.
The selection of sites is aimed at identifying in-
puts of contaminants from localized pollution
sources and providing information on the
transboundary migration of contaminants. Details
of sampling and analytical methods are available
elsewhere (Suns et al 1993).

In general, the data from both programs are
consistent with each other despite differences in
the life habits, exposure periods, physiology, lipid
content and positions in the food web of the or-
ganisms. According to MOEE, the mussel data
cannot be used for trend analysis; the spottail shiner
data can.

Results and Discussion

Figure 7 shows the results for mussels placed at
various sites in the Niagara for a three-week pe-
riod in 1993. The difference in the presence of
contaminants between the Canadian and Ameri-
can sides of the river is obvious. In our opinion,
this Figure illustrates, very clearly, the cause for
contamination of the Niagara River. Many of the
contaminants have been consistently detected at
these sites since 1987.

The significance of some of the sites in Fig-
ure 7 is as follows:

- Bloody Run Creek runs adjacent to
Occidental Hyde Park and was historically
severely contaminated by leachate from the
landfill. This mussel site in the river, at the
base of Bloody Run Creek, is influenced by
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input from the creek and contaminated
sediments.
- The Gill Creek site is influenced by the

input from Gill Creek which traverses the

Olin Corporation and DuPont Chemical
waste sites.
- Occidental Sewer 003 is an outfall from
the Occidental Chemical Corporation Main
Plant (Buffalo Avenue, Niagara Falls). The
sewer runs underground through the OCC
main plant site and adjacent to S-Area be-
fore discharging to the river. The mussel
site is adjacent to this discharge. Several
other outfalls adjacent to OCC property are
also monitored.
- The Pettit Flume, which is a mile-long
concrete box culvert that acts as a munici-
pal storm sewer and drains the Occidental
Durez plant as well as urban run-off from

North Tonawanda, is monitored by two
mussel sites within the contaminated cove
and one upstream and one downstream site
outside the cove.

1. Source Identification and Comparison of
Relative Contributions

The biomonitoring program can be used to com-

pare, spatially, the relative contributions of con-
tamingnts to the river from individual point and

non-point sources.
Figures 8-10 show the 1993 mussel data for

HCB, PCB and 2,3,7,8-TCDD (dioxin), respec-

tively. They show that PCB, HCB and dioxin are

not detected at any of the Canadian sites. In con-

trast, on the U.S. side, these compounds are iden-
tified at all sites, with the concentrations varying

at each site for each chemical. Thus, for HCB,

the relative concentrations, beginning with the

highest are Bloody Run Creek, Pettit Flume and

102nd Street hazardous waste site. Similarly for

PCB, the order is the Occidental sewer 003 and

the 102nd Street sites. Finally, for dioxin, Bloody

Run Creek has, by far, the highest concentration.
Contaminants detected in mussels at these

i sites are consistent with the presence of these com-

pounds in the waste sites or effluents from the in-

dustries.
Figures 11-13 show the spottail shiner data

from 1986-1993 for OCS, mirex and dioxin, re-
spectively. The significance of some of these sites
is as follows:

- Wheatfield is downstream of the Gratwick-
Riverside Park waste site and is influenced
by the inputs from Niagara County Refuse
Disposal site.
. - The 102nd Street site, located in the river
at the 102nd Street waste site, is affected by
runoff from five different waste sites, includ-
ing the Love Canal.
-The Cayuga Creek site, located at the con-
fluence of the Little River and Cayuga
Creek, is directly affected by Love Canal.
The Search and Rescue site is immedi-

ately downstream of Gill Creek.
- The Queenston and Lewiston sites are lo-
cated downstream of the Canadian and U.S.
power plant discharges, respectively.
- Peggy's Eddy, N.Y. is located immediately
downstream of the S.C.A. discharge.

OCS occurs in spottails at a number of U.S. sites.
The highest concentrations observed over this pe-
riod were at the Search and Rescue station just
downstream of Gill Creek. The highest concen-
trations of mirex occured in the lower Niagara
River, however, sources of this chemical have also
been identified at the 102nd Street and Cayuga
Creek sites. Dioxin has been detected at only the
Cayuga Creek site.

The Queenston site on the Canadian side of
the river, perhaps, deserves some explanation as
to why chemicals (mirex, OCS) normally associ-
ated with U.S. sources occur at this site. We sus-
pect that this may be due to inputs via the Robert
Moses power plant discharge (or, perhaps, Hyde
Park leachate), being well mixed in the turbulence
caused by the discharges from the Robert Moses
and Sir Adam Beck plants and crossing to the
Canadian side of the river. The Power Authority
of the State of New York (PASNY) conduits, which
collect water from the river upstream of the Falls
and deliver it directly to the Robert Moses power

7

.. 

input from the creek and contaminated 
sediments. " 0 

• The Gill Creek site is influenced by the 
input from Gill Creek which traverses the 
Olin Corporation and DuPont Chemical 
waste sites. 
• Occidental Sewer 003 is an outfall from 

the Occidental Chemical Corporation Main 
Plant (Buffalo Avenue, Niagara Falls). The 
sewer runs underground through the OCC 
main plant site and adjacent to S-Area be­
fore discharging to the river.' The mussel 
site is adjacent to this discharge. Several 
other outfalls adjacent to OCC property are 
also monitored. 
• The Pettit Flume, which is a mile-long 
concrete box culvert that acts as a munici­
pal storm sewer and drains the Occidental 
Durez plant as well as urban run-off from 
North Tonawanda, is monitored by two 
mussel sites within the contaminated cove 
and one upstream and one downstream site 
outside the cove. 

1. Source Identification and Comparison of 
Relative Contributions 

The biomonitoring program can be used to com­
pare, spatially, the relative contributions of con­
tami~nts to the river from individual point and 
non-point sources. 

Figures 8-10 show the 1993 mussel data for 
HeB, PCB and 2,3,7,8-TCDD (dioxin), respec­
tively. They show that PCB, HCB and dioxin are 
not detected at any of the Canadian sites. In con­
trast, on the U.S. side, these compounds are iden­
tified at all sites, with the concentrations varying 
at each site for each chemical. Thus, for HCB, 
the relative concentrations, beginning' with the 
highest are Bloody Run Creek, Pettit Flume and 
l02nd Street hazardous waste site; Similarly for 
PCB, the order is the Occidental sewer 003 and 
the 102nd Street sites. Finally, for dioxin, Bloody 
Run Creek has, by far, the highest concentration. 

Contaminants detected in mussels at these 
sites are consistent with the presence of these com-
pounds in the waste sites or effluents from the in-

7 

dustries. 
Figures 11-13 show the spottail shiner data 

from 1986-1993 for Des, mirex and dioxin, re­
spectively. The significance of some of these sites 
is as follows: 

• Wheatfield is downstream of the Gratwick­
Riverside Park waste site and is influenced 
by the inputs from Niagara County Refuse 
Disposal site. 
o· The 102nd Street site, located in the river 
at the 102nd Street waste site, is affected by 
runoff from five different waste sites, includ­
ing the Love Canal. 
• The Cayuga Creek site, located at the con­
fluence of the Little River and Cayuga 
Creek, is directly affected by Love Canal. 
• The Search and Rescue site is immedi­

ately downstream of Gill Creek. 
• The Queenston and Lewiston sites are lo­
cated downstream of the Canadian and U.s. 
power plant discharges, respectively. 
• Peggy's Eddy, N.Y. is located immediately 

, downstream of the S.C.A discharge. 

OCS occurs in spottails at a number of u.s. sites. 
The highest concentrations observed over this pe­
riod were at the Search and Rescue station just 
downstream of Gill Creek. The highest d>ncen­
trations of mirex occured in the lower Niagara 
River; however, sources of this chemical have also 
been identified at the 102nd Street and Cayuga 
Creek sites. Dioxin has been detected at only the 
Cayuga Creek site. 

The Queenston site on the Canadian side of 
the river, perhaps, deserves some explanation as 
to why chemicals (mirex, OCS) normally associ­
ated with U.S. sources occur at this site. We sus­
pect that this may be due to inputs via the Robert 
Moses power plant discharge (or, perhaps, Hyde 
Park leachate), being well mixed in the turbulence 
caused by the discharges from the'Robert Moses 
and Sir Adam Beck plants and crossing to the 
Canadian side of the river. The Power Authority 
of the State of New York (pASNY) conduits, which 
collect water from the river upstream of the Falls 
and deliver it directly to the Robert Moses power 



plant, probably collect the inputs from sources
upstream of the Falls and discharge them in the
lower river. High concentrations of mirex, HCB
and PCB have also been found in the bottom
sediments at this location (Kauss 1983), which
seems to corroborate our suspicion.

2. Assess Success of Remediation Activities

The biomonitoring program can assess the suc-
cess of remediation activities at existing waste
sites. Once the sites have been remediated, the
organisms can indicate if the sites are still leach-
ing contaminants to the Niagara River. We have
chosen to illustrate this by looking at the mussel
data for PCB collected since 1986 at Gill Creek
(Figure 14). Two points of explanation about the
Figure are warranted here. First, mussel collec-
tions on the river occur only every two years.
Second, the data do not represent trends. They
show, simply, the concentrations resulting from
the three-week exposure period of the mussels in
the river for that particular year. Notwithstanding
this latter point, the concentrations of PCB meas-
ured in 1993 were the lowest recorded for the Gill
Creek site over the period of record. The mean
value was below the Canada/U.S. Great Lakes
Water Quality Agreement guideline of 100 ng/g
in fish tissue, for the protection of animals and
fish eating-birds. Although this guideline is not
directly applicable in this case, it does provide an
indication of the significance of the mean con-
centration found at Gill Creek.

Gill Creek sediments were known to be
highly contaminated with PCB. Clean-up of the
creek began in June 1992 and was completed in
December 1992. Remediation resulted in the re-
moval of 7,680 yds3 of sediment. The measure-
ments in 1993 may be a reflection of the impact
of this clean-up. We have no explanation, at this
time, for the exceedingly high concentrations
measured in 1991. ..

3. Fong-Term Trend Analysis

The spottail shiner program, in particular,'--an be
used for long-term trend analysis of contaminants

at various site specific locations in the Niagara
River. We have chosen to illustrate this with the
data for PCB and mirex collected at NOTL since
1975. Figure 15 shows the spottaiI shiner data for
PCB. In general, the data show that there has been
a substantial decrease in PCB concentrations com-
pared to those observed in the mid-70s. The na-
ture of the changes since the mid-80s, however, is
not as clear. Figure 16 shows the data for mirex.
The data show the same sporadic occurrence of
mirex in spottails as in suspended sediments. The
sources of mirex identified by the spottail shiner
data have been consistent with the data from caged
mussels. While there appears to have been some
decrease since the 70s, the changes since the mid-
80s are more difficult to interpret due to fluctua-
tions in the data.

A PROPOSED NEW APPROACH

1. The major source of loads to the Niagara
river for some of the eighteen priority toxics is
lake Erie. We have illustrated this using the wa-
ter concentrations of dieldrin and have suggested
that a similar situation may apply for DDT and its
metabolites and chlordane. We suggested that for
these chemicals, any additional loads to the
Niagara River from sources along the river would
probably be lost in the noise of the data. More
importantly, reductions in the loads of these chemi-
cals from Niagara River sources probably would
have negligible impact on improving conditions
in the river, or in Lake Ontario. This is not to
suggest that controlling any additional loads is not
important. However, it does raise the question of
why these chemicals are on the list of priority
toxics. More generally, we have some problems
with how the eighteen came to be designated as
priority toxics in the first place. In our opinion,
it would be more meaningful to focus more closely
on those chemicals that we know are being con-
tributed specifically and significantly by Niagara
River sources. This has been previously recom-
mended by Williams et al (1992) who suggested
an initial short list might be composed of those
chemicals which only show up at NOTL (mirex,
HCBD, OCS and several chlorobenzenes). Fig-
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mirex in spottails as in suspended sediments. The 
sources of mirex identified by the spottail shiner 
data have been consistent with the data from caged 
mussels. While there appears to have been some 
decrease since the 70s, the changes since the mid-
80s are more difficult to interpret due to fluctua­
tions in the data. 

A PROPOSED NEW APPROACH 

1. The major source of loads to the Niagara 
river for some of the eighteen priority toxics is 
Lake Erie. We have illustrated this using the wa­
ter concentrations of dieldrin and have suggested 
that a similar situation may apply for DDT and its 
metabolites and chlordane. We suggested that for 
these chemicals, any additional loads to the 
Niagara River from sources along the river would 
probably be lost in the noise of the data. More 
importantly, reductions in the loads of these chemi­
cals from Niagara River sources probably would 
have negligible impact on improving conditions 
in the river, or in Lake Ontario. This is not to 
suggest that controlling any additional loads is not 
important. However, it does raise the question of 
why these chemicals are on the list of priority 
toxics. More generally, we have some problems 
with how the eighteen came to be designated as 
priority toxies in the first place. In our opinion, 
it would be more meaningful to focus more closely 
on those chemicals that we know are being COD­

tributed specifically and significantly by Niagara 
River sources. This has been previously recom­
mended by Williams et al (1992) who suggested 
an initial short list might be composed of those 
chemicals which only show up at NOTL (mirex, 
HCBD, OCS and several chlorobenzenes). Fig-



ure 17 shows the total chlorobenzenes loading data
for the period 86/87 to 92/93 for both NOTL and
FE. The Figure demonstrates, clearly, that there
are very large additional loads of chlorobenzenes
being added from sources along the river. The
advantages of this approach are that (1) it deals
very directly with chemicals from sources which
must be along the aver, and (2) successes in deal-
ing with the sources of these chemicals will also
reduce inputs of other chemicals at these same
sources.
2. Some interesting studies have been done to
identify specific organic compounds migrating
from specific waste sites on the American side of
the Niagara River. Jaffe, Hites and co-workers
have been able to identify, what we call, "marker"
or "tracer" chemicals which are unique for spe-
cific sites. These marker chemicals. can also be
used for distinguishing inputs between sites. For
example, using a group of compounds which ap-
parently come from Love Canal, they were able
to distinguish between inputs from Love Canal and
the 102nd Street waste sites (Jaffe and Hites 1984).
Likewise a group of fluorinated aromatic com-
pounds were linked specifically with inputs from
the Hyde Park waste site (Elder et al 1981; Jaffe
and Hites 1986). These fluorinated compounds
could be traced right into the sediments in Lake
Ontario. We feel strongly that serious considera-
tion should be given to including the use of marker
chemicals as part of the NRTMP. The advantages
of such an approach are (1) being able to chemi-
cally tag the inputs from a specific site, and (b)
being able to comment effectively on the success
of remedial actions at those sites. Perhaps, incor-
porating this approach into the NRTMP might even
circumvent the need for determining reliable loads
from these sites, which we feel, because of the
uncertainties involved, is close to an impossible
task.
3. Tb determine reliable estimates of loads from
sources, improvements will be required in the point
and non-point source components of the NRTMP.
These include improved detection limits and im-
proved frequency of monitoring.
4. The overall goal of the Niagara River Dec-
laration of Intent is to achieve significant reduc-

tions of toxic contaminants in the Niagara River.
In keeping with this goal, we feel that the NRTMP
should not restrict its focus to just 18 priority
toxics, but report on all toxics for which useful
information is available.
5. Finally, this paper has demonstrated the im-
portance and complementarity of the upstream/
downstream program and the biomonitoring pro-.
gram. We feel that biomonitoring should become
a component of the NRTMP. Furthermore, we
feel that all other useful, available information,
whether a current component of the NRTMP or
not, should be used to help assess the effective-
ness of remedial actions being taken in the Niagara
River.
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In keeping with this goal. we feel that the NRTMP 
should not restrict its focus to just 18 priority 
toxies, but report on all toxies for which useful 
information is available. 
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18 Priority
Toxics

10 Chemicals for
50% Reduction by

1996

Benz(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Dioxin (2,3,7,8-TODD)
Hexachlorobenzene
Mercury
Mirex/Photomirex
PCBs
Tetrachloroethylene

Table 1. Eighteen Priority Toxics for the NRTMP.

8 Additional
Chemicals
Arsenic
Chlordane
Chrysene/Triphenylen
DDT & Metabolites
Dieldrin
Lead
Octachlorostyrene
Toxaphene
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50% Reduction by 
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Figure 1. Concentration of Hexachlorobutadiene on Suspended Sediments at NOTL, 1986- 1993.
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Figure 2. Concentration of Octachlorostyrene on Suspended Sediments at NOTL, 1986 -1993.
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Figure 1. Concentration of Hexachlorobutadiene on Suspended Sediments at NOTL, 1986- 1993. 
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Figure 7. Contaminants detected in caged mussels introduced to the Niagara River for three weeks in 1993. 
Many of these contaminants have been consistently detected at these sites since 1987_ 
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Figure 10. Concentrations of 2,3,7,8-TCDD in Mussels, 1993.
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Figure 11. Octachlorosytrene Concentrations in Spottail Shiners, 1986 - 1993.
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Figure 11. Octachlorosytrene Concentrations in Spottail Shiners, 1986 - 1993. 
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Figure 15. PCBs in Spottail Shiners at NOTL. 
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Figure 16. Mirex Levels in Spottail Shiners at NOTL.

Figure 17. Total Chlorobenzenes loading data during 1986 - 1993 for both NOTL and FE.
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Figure 17. Total Chlorobenzenes loading data during 1986 - 1993 for both NOTL and FE. 


